Patients Health Care Hospital Physician Clinical Research Service Providers

Using EHRs for clinical research: Quality matters

Prof Dipak Kalra President of i~HD

The Value of Health

Political and policy context

Economic context:

- Legacy of the crisis: high debts and deficits
- Continued increases in public health spending anticipated
- Concerns about how this will be paid for (sustainability of public finances)

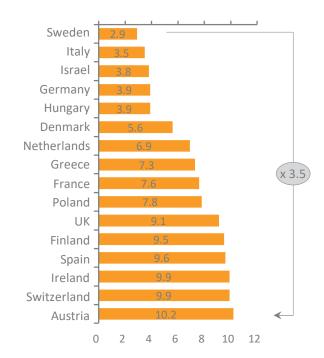
Population health:

- Ageing and rising levels of chronic disease and comorbidity
- Public health problems and inequalities

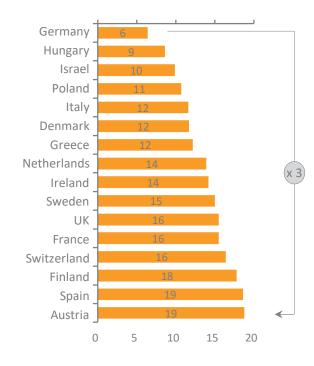
Health systems:

- Challenge of responding to changing population needs
- Need for structural reforms e.g. integrated care, eHealth
- Evidence of marked variation in clinical practices and significant levels of 'waste'

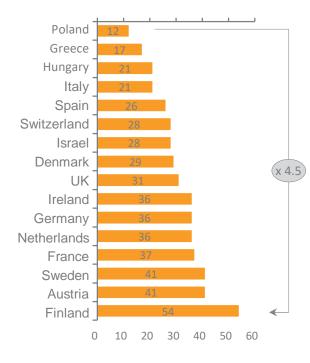
Joint Report on Health Care and Long-Term Care Systems & Fiscal Sustainability


Volume 1

Slide courtesy of Daniel Furby, FIPRA International


Variation of heart failure outcomes across European countries

> 3x variation in death during first HF admission


Death during first admission, %

3x variation in 12 week mortality rate for HF

12 week mortality rate, %

>4x variation in 12 week readmission rate for HF

Slide courtesy of Thomas Allvin, EFPIA

Growing international adoption of electronic health record systems

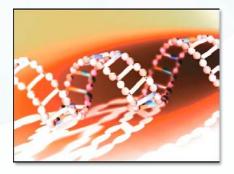
		Cro
Stage 7	Paperless environment enabling data continuity to deliver and manage patient care for all hospital services and supporting coordinated care delivery → Optimized quality of care and patient safety → Optimized clinical operational and business process efficiency	Sta
Stage 6	Optimized diagnostic and care delivery efficiency by standard treatment protocols; Further reduction / elimination of medical errors → improved patient safety; Reduced / eliminated paper-based documentation and dictation and transcription costs; Improved billing and coding	Sta
Stage 5	Elimination of film reduces costs and need for storage space, image sharing works faster and more efficiently, redundant imaging can be avoided	Sta
Stage 4	Improved care delivery efficiency and reduced medical errors with CPOE	Sta
Stage 3	Optimised collection of nursing and clinical information; Standardized care delivery \rightarrow first improvements of care quality	Sta
Stage 2	Optimised access to diagnostic results, sharing of patient-information	Sta
Stage 1	Improved key dept. operations and access to diagnostic information	
Stage 0	Low clinical value; mainly patient administration and hospital management	Sta

Cross Country EMRAM Score Distribution# (2015 Q2)

Stage	United States*	Canada*	Austria	Netherlands	Germany*	Italy*	Spain*
Stage 7	3.7%	0.2%	0.0%	0.0%	0.6%	0.0%	0.4%
Stage 6	22.2%	0.8%	0.0%	9.5%	0.0%	1.4%	3.9%
Stage 5	30.8%	0.9%	35.7%	38.1%	11.6%	19.4%	42.4%
Stage 4	13.6%	3.3%	2.4%	3.2%	6.7%	0.9%	5.2%
Stage 3	19.7%	31.4%	0.0%	1.6%	4.9%	4.7%	1.7%
Stage 2	4.3%	30.6%	38.1%	46.0%	23.8%	40.3%	26.2%
Stage 1	2.2%	14.2%	2.4%	1.6%	0.6%	22.3%	6.6%
Stage 0	3.5%	18.7%	21.4%	0.0%	51.8%	10.9%	13.5%
	N = 5462	N = 641	N = 42	N= 63	N = 164	N = 211	N = 229

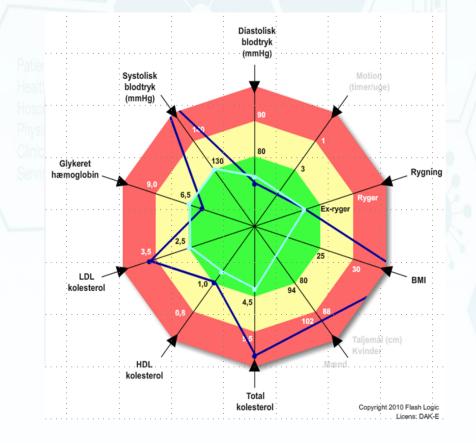
Source: HIMSS Analytics® Database

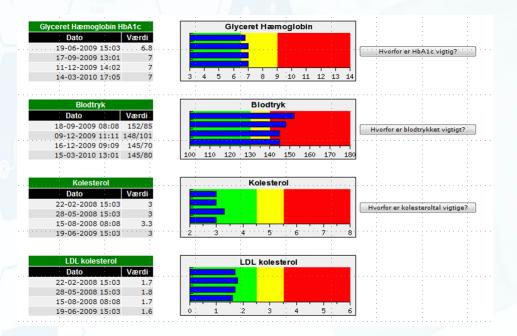
Physicians using the EHR for routine clinical documentation



Source: Accenture eight-country survey of 3,700 doctors, Nov-Dec, 2012

EHR trends

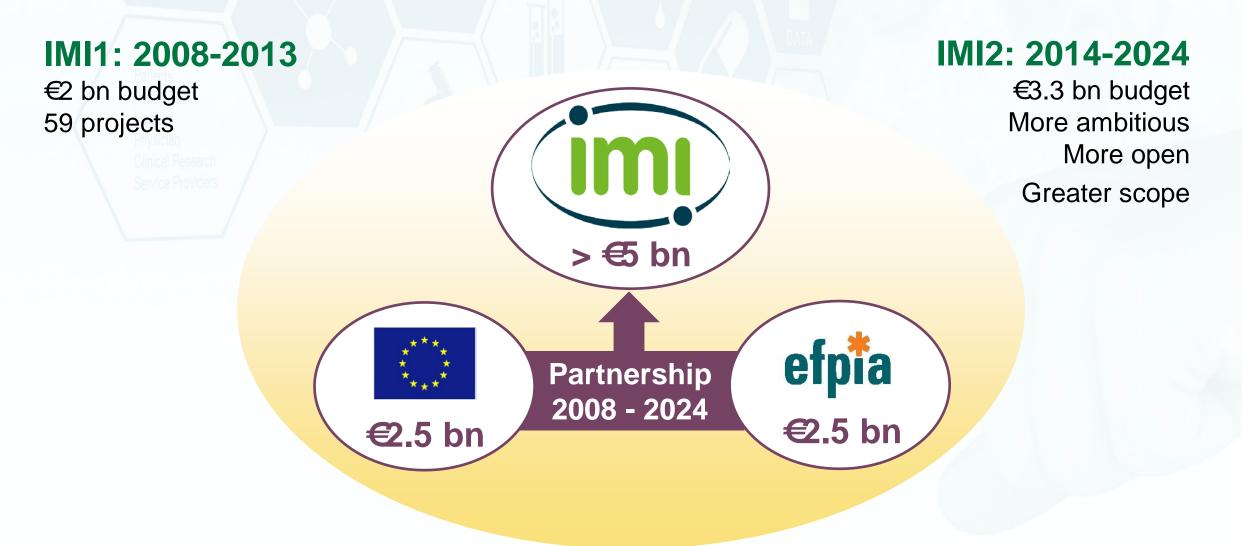

- Patient-centred (gatekeeper?), life long records
- Multi-disciplinary / multi-professional
- Transmural, distributed and virtual
- Structured and coded (cf. semantic interoperability)
- More metadata and coding at a granular level!
- Intelligent (cf. decision support), clinical pathways...
- Predictive (e.g. genetic data, physiological models)
- More sensitive content (privacy protection)
- Integrative
- Personalised



The patients individual plan and goals

7

Large scale clinical data repositories


- Kaiser Permanente is able to track outcomes and develop data driven algorithms using the EHRs of its 9 million patients
 - HIV death rate half of national average
 - Decrease in coronary heart disease death rate by a third
 - Decrease in pressure ulcers by two thirds
 - Death due to sepsis reduced by > 50% (for all USA, would save 72,000 lives p.a.)

Some examples of new research evidence from big data

- Validating >200 novel biomarkers predicting cardiovascular risk
- Investigating variation of 174,000 observed national prescribing patterns to national guidelines for COPD
- Comparing ~8,000 treatment outcomes for leukaemia by age: uncovering a major unmet treatment need
- Developing new cancer risk stratification algorithms by mining >700 million records

Singh G, Schulthess D, Hughes N, Vannieuwenhuyse B, Kalra D. Real world big data for clinical research and drug development. Drug Discov Today. 2017 https://doi.org/10.1016/j.drudis.2017.12.002

IMI – Europe's partnership for health

The EHR4CR project

- EHR4CR Electronic Health Records for Clinical Research
 - 4+1 year project (2011-2016), 35 partners, budget >17M€
- Objectives & Scope
 - Provide a platform for trustworthy re-use of EHR data to support innovation in clinical research and healthcare operations.
 - Securely reusing health data for optimising clinical trials
 - 7 pilot sites across Europe
- Status
 - Extended into 2016 for making the transition to a sustainable platform
 - Initiated a Champion Programme, connecting hospitals to an operational platform, building up experience with pharma
 - The European Institute for Innovation through Health Data an independent governance body

For more information: http://www.ehr4cr.eu/

The EHR4CR objective

- Research and develop a trustworthy service platform able to unlock clinical information stored in EHRs for improving clinical research
 - Clear focus on three (3) relevant use cases

Enabling **protocol testing with real world data** in potential trial sites rather than with guestimates.

FEASIBILITY

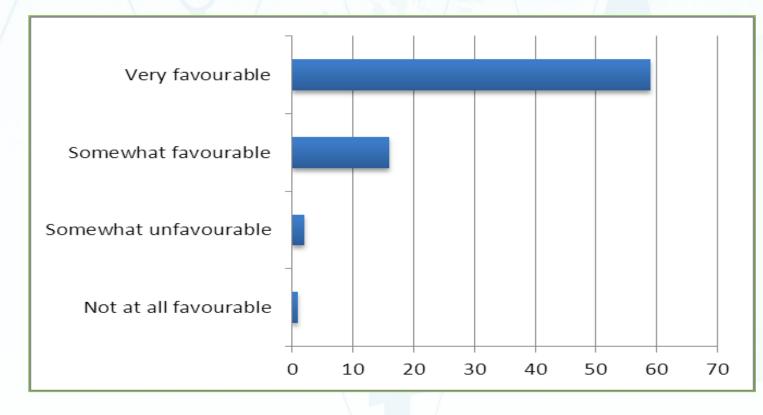
Speeding up recruitment by making EHR data **searchable for investigators** and establishing a **unified communication path** between sponsors and sites.

Ň

PATIENT

RECRUITMENT

Facilitating **EHR data extraction** for applications used during trial execution (e.g. prefilling of CRFs and of SAE reports).


SAFFTY REPORT

CAPTURE AND

EXCHANGE

Confirming public acceptance

 High percentage of respondents were in favour of re-using EHR data for research

The EHR4CR results

- An innovative platform to enable the trustworthy reuse of health data for research
- The platform can connect securely to the data within multiple hospital EHR systems and clinical data warehouses across Europe
- It enables trial sponsors (e.g. pharma) to
 - predict the number of eligible patients for a candidate clinical trial protocol
 - assess its feasibility and to locate the most relevant hospital sites
- It enables connected hospitals to
 - efficiently identify and contact the patients who may be eligible for particular clinical trials
- Now being deployed commercially: the InSite Platform, by Custodix

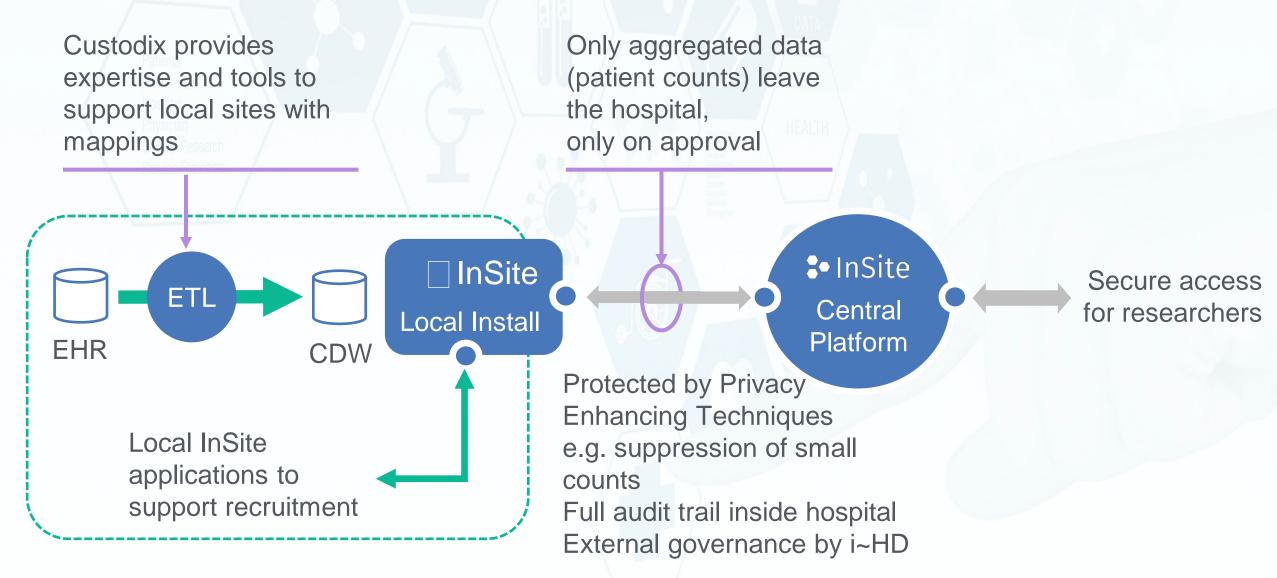
Confirming data availability

Health Care Hospital Physician Clinical Research Service Providers

A European inventory of common electronic health record data elements for clinical trial feasibility

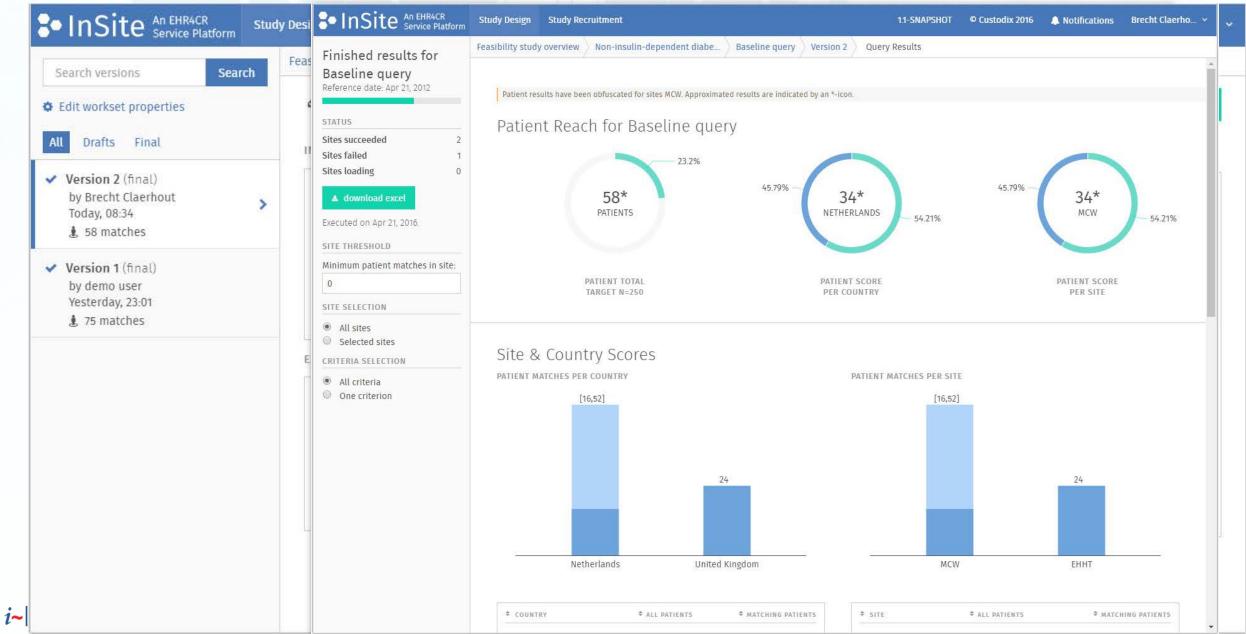
Justin Doods, Florence Botteri, Martin Dugas, Fleur Fritz and on behalf of EHR4CR WP7

Trials 2014, 15:18 http://www.trialsjournal.com/content/15/1/18

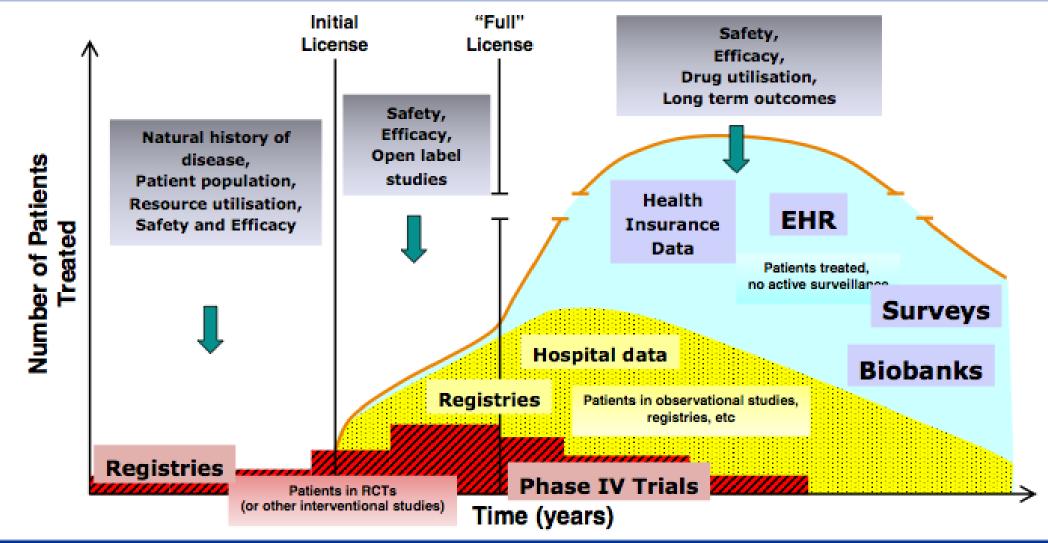

Data Group	Data Item	Medication	Medication start date	
Demographics	Gender	Medication	Verbatim Drug name	
Demographics	Case Status	Findings	Date / Time of Finding	
Demographics	Date of Birth	Laboratory Findings	Neutrophils Blood	
Demographics	Admission date	Laboratory Findings	TSH in serum	
Diagnosis	Diagnosis Text	Medication	Dosage	
Diagnosis	Diagnosis Code	Findings	Weight	
Demographics	Discharge date	Laboratory Findings	GFR	
Diagnosis	Diagnosis Date	Medical History	currently pregnant	
Laboratory Findings	Potassium in serum	Medical HIstory	menopausal status	
Laboratory Findings	Sodium in Serum	Findings	Height	
Laboratory Findings	Platelets Blood	Medical History	Allergies and Hypersensitivity Reactions	
Laboratory Findings	SGPT (ALT) in serum	Laboratory Findings	ыртн	
Laboratory Findings	Total Protein in serum	Medical History	Smoking Status	
Laboratory Findings	Total Bilirubin in serum	Medication	Route	
Procedure	Procedure Code	Laboratory Findings	HbA1c Blood	
Laboratory Findings	Creatinine in serum	Medical History	Alcohol Abuse	
Laboratory Findings	Glucose in serum	Laboratory Findings	Blood Urea Nitrogen [BUN]	
Laboratory Findings	SGOT (AST) in serum	Medication	Medication Code	
Laboratory Findings	Alkaline Phosphatase	Findings	Pulse	
Laboratory Findings	Total Cholesterol in serum	Laboratory Findings	PSA	
Laboratory Findings	Erythrocytes	Laboratory Findings	NTproBNP	
Laboratory Findings	Haemoglobin Blood	Diagnosis	Histologically confirmed diagnosis	
Laboratory Findings	Albumin	Laboratory Findings	Beta HCG in serum	
Laboratory Findings	Calcium in serum	laboratory findings	HER2 status	
Laboratory Findings	Leukocytes	Laboratory Findings	CaxP	
Procedure	Procedure Text	Medication	Drug class	
Laboratory Findings	Sampling Date / Time of Laboratory Finding	Laboratory Findings	Cardiac troponin T	
Laboratory Findings	Triglycerides	Medical History	pregnancy number	
Laboratory Findings	CRP in serum	Medication	Medication end date	
Laboratory Findings	HDL in serum	Findings	Temperature	
Laboratory Findings	INR Blood	Laboratory Findings	Direct Bilirubin in serum	
Laboratory Findings	Haematocrit Blood	Medical History	Diet	
Procedure	Procedure Date	Medical History	Substance Abuse	
Laboratory Findings	Eosinophils Blood	Laboratory Findings	BNP	
Laboratory Findings	Lymphocytes Blood	laboratory finding	MAGE-A3 status	
Laboratory Findings	PTT Blood	Medical History	Lactation	
Laboratory Findings	GGT	Scores or Classification	GRID-HAMD	
Findings	Blood pressure systolic	Scores or Classification	Hoehn and Yahr	
Findings	Blood pressure diastolic	Scores or Classification	MMSE	
Laboratory Findings	LDL in serum	Scores or Classification	UPDRS Section 1	

columns (site 1 to site 9) display the frequency at the individual sites. The Data Inventory is ordered by the average usage sorted in descending order from most available to least. The frequency ranges from 100% (dark green) to 0% (dark red). Data elements that are not available at a site

are shown as Not Available (NA) (black).


i~∎D

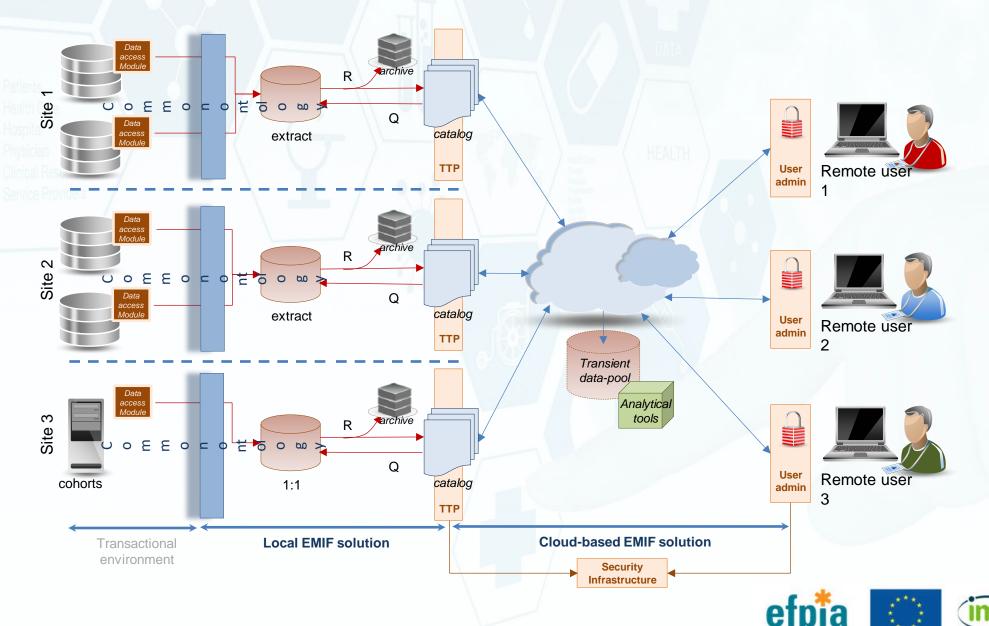
InSite – technical overview, for protocol feasibility


InSite – Protocol feasibility query

17

RWE through the lifecycle

Discover


To become the trusted European hub for health care data intelligence, enabling new insights into diseases and treatments

Assess

Reuse

Data Discovery \rightarrow **Data Access** \rightarrow **Data Reuse**

innovative medicines initiative

EMIF catalogue: meta-data of available datasets (emif catalogue.eu)

and Domontia in

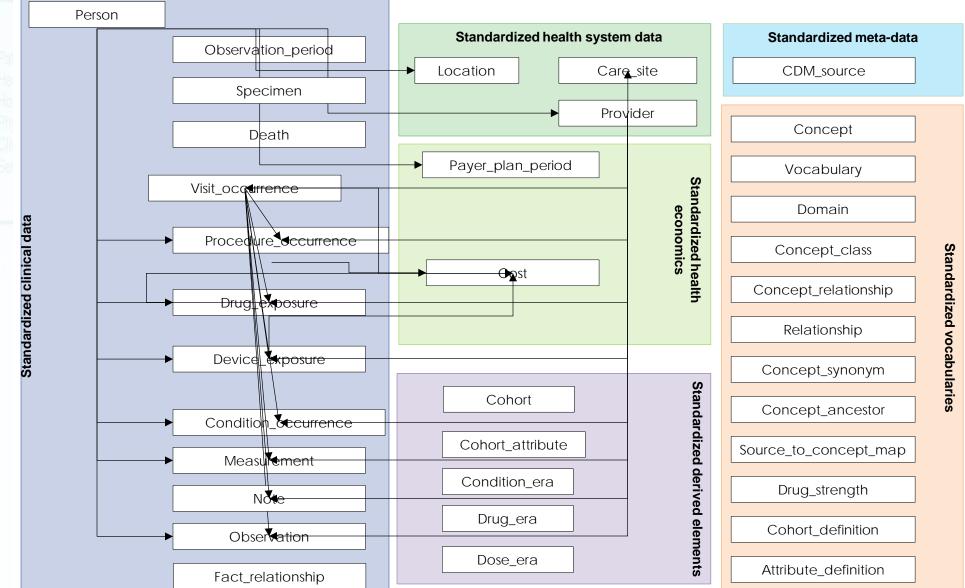
_							
are		EMIF CATALOGUE / EM	IIF AD				
l	<u>(</u>	EMIF AD / All	EMIF AD / All				
roviders	Stephanie Vos	Acronym 🗸	Name -	Institutior			
	A HOME	Filter	Filter	Filter			
		AddNeuroMed	AddNeuroMed,	Institute of			
	HELP		Innovative Medicines for	King's Coll London			
	 CONTACT 		Europe (Innomed)				
	COMMUNITY	ADGEN	Kuopio-ADGEN	University Finland			
	EMIF AD	ADNI-1	Alzheimer's Disease	University			
	⊞ All Q Search		Neuroimaging Initiative	California			
	E Custom view	ADNI 2	Alzheimer's	University			
	😧 Мар		Disease Neuroimaging	California			
	🙆 Dashboard		Initiative				
	O New	ADNI-GO	Alzheimer's Disease	University			
	🎔 Personal		Neuroimaging Initiative	California			
	Arivate Links	AgeCoDe	German Study on Ageing, Cognition,	University			
	≁ MANAGE						

13 Compare -⊖ Print 1 Export Selected databases: 0 ----Location Last update -Select on name P...-0 Filter Fil Filt Filter of Psychiatry. City of London, Greater 2016-04-04 London, England, ollege United Kingdom v of Eastern Kuopio, Kuopio, 2015-11-06 Pohjois-Savo, Finland 2015-11-06 v of San Francisco County, California, United States v of San Francisco County, 2015-11-06 California, United States y of San Diego County, 2015-11-05 California, United States v of Bonn Germany 2003 1.338 2015-11-05

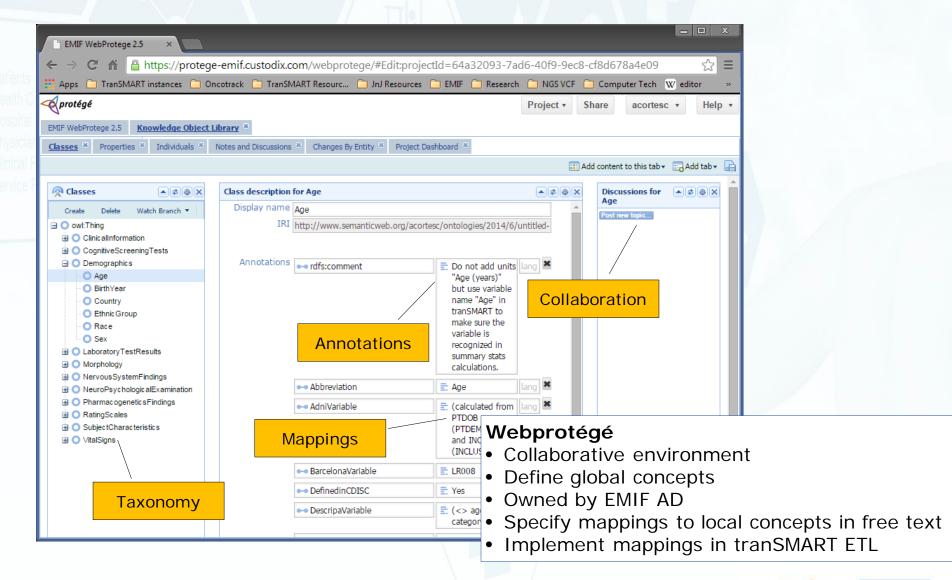
Q Free text search EMIF AD

(:

 (\mathbf{Q})


Catalogue – suitability

C EMIF Catalogue - IPCI - Google Chrome My ENIF Catalogue - IPCI × ☆ 🖸 🚺 🚖 👙 🗉 🗲 🤿 🕻 🔒 https://emif-catalogue.eu/c/observational/fingerprint/54d8384917b21fb7928ba72a1e72326b/1/ $\mathbf{Q}(\mathbf{I})$ \equiv EMIF CATALOGUE / EMIF EHR Q Free text search EMIF EHR = Print P EMIFEHR / All / IPCI Rudi Verbeeck 📥 Extra Information I Fingerprint Jerboa Achilles Documents Literature Discussion # HOME Last update on: 03/11/2015 15:03:28 ABOUT CHARACTERISTIC TYPE Filter Active patients Male/Female 🕘 HELP 4 Gender Number of patient with a least one day of patient time in a year CONTACT Birth Year Start Year Chart Tabular End Year EMIF EHR ± Export -Age Distribution at Start of Year M F Age Distribution of Patients Q Search Entering 600000 -Custom view Age Distribution of Patients Exiting 500000 -🚱 Мар Age Distribution at Start of Year percentiles 400000 -2 Dashboard Age Distribution of Patients New Entering - percentiles 300000 -Age Distribution of Patients Exiting Personal 200000 -- percentiles Private Links Patient time before a year -100000 percentile 0 -Patient time after a year - percentile 2000 2002 2004 2006 2008 2012 2014 1008 1998 2010 Years Patient time


The OMOP Common Data Model

i~HD

23

TranSMART data load using Webprotégé

Source: Rudi Verbeeck and Michel Van Speybroeck - Janssen

innovative

medicines

nitiative

EMIF-AD tranSMART data platform

Slide courtesy of Peter Egger, GSK

A convergence of opportunity

Patients Health Care Hospital Physician Clinical Research Service Provider

Clinical Research

Optimise clinical research processes

- achieve faster and more accurate patient identification
- identify sites that have access to the most suitable patients
- reduce protocol amendments

Enhance access to Real World Data

- study the use of new medicines in real populations
- conduct comparative effectiveness studies
- monitor long term safety
- build evidence for adaptive pathways

Healthcare

Improve quality and safety of care • enhance care co-ordination

- increase adherence to clinical evidence
- reduce medical errors and treatment delays

Support patients in self-care and health maintenance

Improve efficiency of care

- optimise care pathways to improve outcomes
- collate evidence for public health strategy and decision-making

Need to improve access to combined health data from diverse sources across Europe

Common challenges to the use of health data for person centred care, and the re-use of health data for clinical research

Privacy protection, ethics and security

accessing data

Quality and interoperability of health data

learning from the data

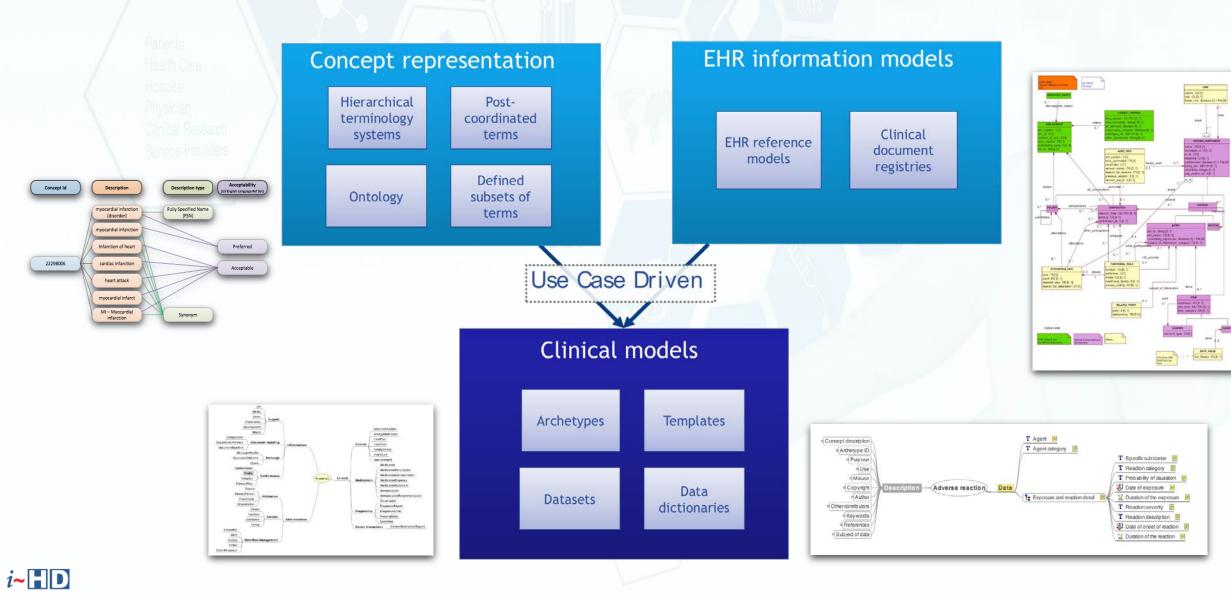
Demonstrating value

transforming healthcare

The European Institute for Innovation through Health Data (i~HD): a neutral body, bringing stakeholders together

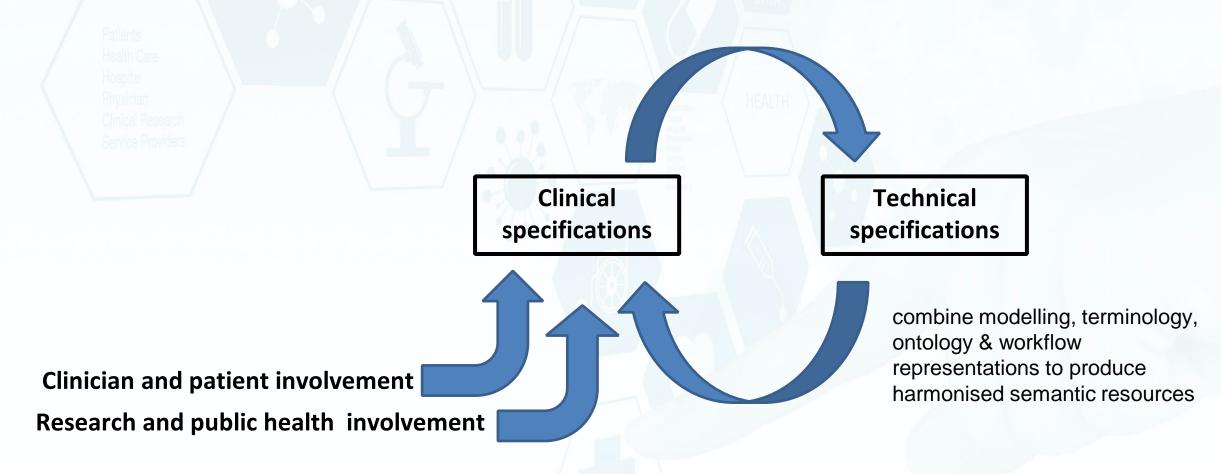
i~HD

Goal of i~HD: assuring public trust when reusing EHRs for research


- Compliance with data protection legislation, at a European level and across all European Member States
- Consistent information governance practices and expectations across Europe
 - Societally acceptable good practices for governing many uses of health data
 - Reflect state of the art in privacy protection and information security
 - Greater confidence and reduced risk for those providing data for research use e.g. hospitals, GPs, patients
 - Greater confidence and reduced risk for those performing the research, managing the data or sponsoring the research
- Greater societal endorsement of public health and research uses of health data
- A scaling up of learning from health data, leading to more rapid innovation in treatments, and accelerated health system transformation towards better health outcomes

Essential needs for interoperability

- Guideline and decision support systems, notification and alerting components, and analytic tools need to process integrated health data drawn from multiple EHR systems in a consistent manner
- Intelligent personal health guidelines interoperating with PHRs and EHRs need to support the centring of care on patients
- Health services, insurers and public health bodies need <u>fine grained activity</u> and outcome data to inform service planning, commissioning and prevention/wellness programmes
- New generation personalised medicine, underpinned by 'omics' sciences and translational research such as the VPH, needs to <u>integrate EHRs with data</u> <u>from research</u>: fundamental biomedical science, clinical and population health research, and clinical trials

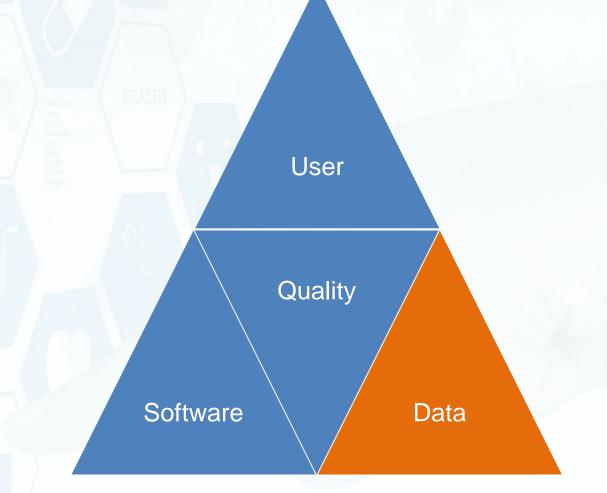


Overview of assets used to represent clinical meaning

Developing good practices in the collaborative development of standards

i~HD semantic interoperability priorities

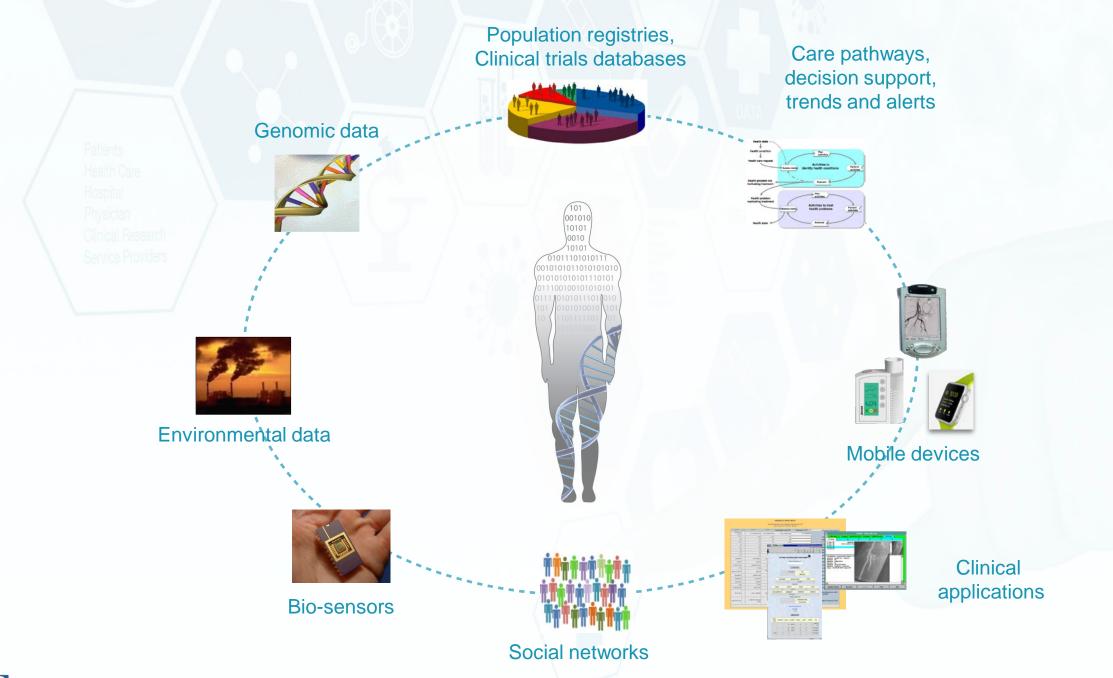
- Fostering the co-design of semantic interoperability assets by clinicians, patients, research
- Designing quality processes for clinical information models and terminology value sets
- Quality labelling and providing a public directory of interoperability assets
- Promoting adoption of interoperability standards and profiles



 Forging an alliance amongst standards developers, implementers, purchasers and users, on future EHR data quality and standards

i~HD Data Quality Taskforce aims

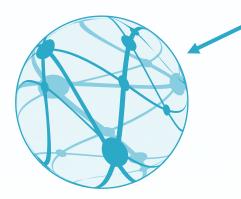
- Develop data quality assessment methods, tools and improvement strategies to maximise quality of health data
- Promote the importance of data quality
- Guidance in assessing and improving data quality
- Scale up a multi-stakeholder understanding and commitment to increase data quality
- \rightarrow Focus on three areas:
 - → Healthcare
 - → Clinical trials
 - → Big data



Data quality dimensions

Name	Definition	Name	Definition
Completeness	Data values are present	limeliness	Data is up-to-date to their real world state for the task at hand
Consistency	Data satisfy constraints (format, allowable ranges and values, domain rules, relations)	Stability	Data inherent concepts and statistics are comparable among sources (hospitals, professionals, etc) and over time
Correctness	Values are true and unbiased with respect to their real-world state	Relevance	Data are useful for their task
Correctiness		I Contextualization	Data are annotated with the acquisition
	Records representing a single patient are not replicated		context, their meaning and semantics
		Trustworthiness	Data can be trusted based on the reputation of the stakeholders involved in their acquisition

Slide courtesy of Pascal Coorevits, Ghent University & EuroRec and Carlos Sáez, Universitat Politècnica de València



Demonstrating value from the use of health data

Value to healthcare

Clinical Research Service Providers

Grow a Network of Excellence

Value to patients and to society

Value to research

Evaluate the benefits of using health data on a large scale:

outcomes evidence to improve care
faster and more efficient clinical research
stronger evidence for public health strategy
patient empowerment for better health

Promote our mission and collaborate globally

